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Reaction field cavity optimization: A born-again Born model
for ionic hydration

Chao-Ping Hsu
Department of Chemistry, University of California at Berkeley, Berkeley, California 94720

Martin Head-Gordona)

Department of Chemistry, University of California at Berkeley and Lawrence Berkeley National Laboratory,
Berkeley, California 94720

Teresa Head-Gordona)

Physical Biosciences and Life Sciences Divisions, Lawrence Berkeley National Laboratory, Berkeley,
California 94720

~Received 29 June 1999; accepted 8 September 1999!

We present a new quantum reaction field model, the electronic reaction field~ERF!, which does not
require the empirical specification of cavity shape and size. We demonstrate our approach on one of
the simplest reaction field theories, the Born model for aqueous atomic ion solvation. The ERF
model enforces complete solute–solvent separability so that the solute wave function is optimized
under the boundary condition that it is fully contained within the cavity. This model imposes the
exact condition necessary for treating the solute quantum mechanically and the other as a
macroscopic classical dielectric, and allows the testing of the primary assumption in the dielectric
continuum approximation that the molecular character of solvent is unimportant. We show that the
Born theory for monovalent and divalent cations is consistent with ERF model enforcing full wave
function containment, while strict solute–solvent separability gives a poor description for anions of
any valency. ©1999 American Institute of Physics.@S0021-9606~99!51245-2#
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INTRODUCTION

Reaction field~RF! methods are one of the simplest a
proaches to modeling the condensed phase since only
solute is treated in microscopic detail.1 Perhaps surprisingly
the results that have been obtained on a wide variety of
lecular properties using reaction field descriptions of the c
densed phase often mimic experiment quite closely. For
ample, chemical equilibria,2–4 isomerization,5 reactivity,6

frequency shifts,7 solubility data,8 and higher order
properties9 have been predicted with RF models. This is ve
important because while the first fully quantum treatments
solvation are beginning to emerge, their cost is curren
such that they will not be feasible for routine use in the n
future.10,11

These results seem to indicate that RF approache
solvation are of considerable value as a first approxima
to the effects of the condensed phase when first-order e
trostatic effects dominate. Recovery of additional nonelec
static or nonlinear free energy terms, such as the work
create a cavity of a given size, dielectric saturation, and e
trostriction, are currently handled empirically in a RF mod
These empirical approaches include adjusting cavity s
permitting the solute wave function to penetrate the cav
boundary to some degree, allowing the dielectric constan
change as a function of distance, or parametrizing th
terms explicitly.12–23Therefore empirical adjustments or pr
tocols to define the cavity shape and size are a sensible p

a!Authors to whom all correspondence should be addressed.
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metric means for compensating for a limited solvation mo
such as the reaction field when nonelectrostatic and/or n
linear terms compete with linear-response electrostatics.

However, the purpose of our study is to clearly ass
the extent to which success of reaction field modeling
attributable to it correctly describing the fundamental phys
of solvation. We do this by lifting the empiricism of definin
cavity size by treating the cavity extent as a variable that
be optimized. The electronic reaction field~ERF! model si-
multaneously varies the solute cavity radius and the quan
mechanical wave function of the solute in the presence o
reaction field, subject to the constraint that the solute w
function is entirely confined to the cavity.

The simplest reaction field model, the Born model24

treats the free energy of solvation for ions in solution acco
ing to the following process:~1! the ion is stripped of its
charge in vacuum,DG1 , ~2! the uncharged sphere is tran
ferred to a dielectric continuum, and gives rise to a fr
energy cost of creating a cavity,DG2 , and~3! the sphere is
recharged in the dielectric continuum solvent,DG3 . In the
original Born theory it was assumed thatDG2 is zero. Also
Born theory assumes that there is no free energy change
to subsequent molecular reorganization of solvent around
recharged sphere, or nonlinear response terms, which we
call DG4 . Therefore Born theory assumes that the free
ergy of solvation is due to the difference in charging
vacuum and dielectric

DGsolvation5DG12DG352S 12
1

e D q2

2a
, ~1!
0 © 1999 American Institute of Physics
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wheree is a dielectric constant outside the sphere,q is the
ionic charge, anda is the cavity radius. The Born model o
the free energy of ion solvation is essentially a description
the dominance of theelectrostaticfree energy in the linea
response regime.

In the ERF model, the constraint of a cavity confin
wave function sets up a competition between reaction fi
stabilization, which favors smaller cavities, and the energ
cost, primarily through increased kinetic energy confini
the molecular wave function, which favors larger cavitie
Furthermore this model enforcesstrict separability of the
solute and solvent charge densities, which is exactly the c
dition which is necessary as a basis for treating one quan
mechanically and the other as a macroscopic classical die
tric. Existing reaction field models do not enforce this co
straint and must therefore be employed with empirically c
sen cavities.25 We find that this strict Born/ERF model seem
to capture the fundamental physics of monovalent and d
lent cation hydration, but is in serious error for describing
free energy of aqueous solvation of monovalent and mu
valent anions.

THE ELECTRONIC REACTION FIELD „ERF… MODEL

The principal issue to address is confining the sol
wave function~or charge density! to a specified molecula
cavity. In related areas, the model problem of the hydro
atom confined in a sphere has been solved exactly, and
proximate calculations of larger atoms confined with
spheres have been performed in connection with estima
pressure effects on the electronic structure and propertie
atoms.26,27 These calculations, while not sophisticated
current electronic structure standards, do demonstrate
feasibility of wave function confinement, at least for simp
cavity geometries.

Total wave function containment can be achieved eit
by explicit imposition of this condition in a constrained o
timization sense, or by expansion of the wave function~or
charge density! in terms of a set of basis functions all o
which individually satisfy this boundary condition. The latt
approach is simpler and more feasible for spherical ions,
is what we shall use in this exploratory study. The stand
atom-centered Gaussian basis functions of quantum che
try are not directly appropriate for finding a wave functio
constrained to a cavity because they do not have sha
defined extent. Instead, they have tails that decay into
dielectric continuum. We require modified functions that
exactly to zero at the boundary, with nonzero derivatives
the boundary.26,27Hence simply scaling Gaussian exponen
or shifting the centers of functions such that they appro
zero at the boundary to within a prescribed tolerance is
adequate, because all derivatives of such functions appr
zero at the boundary. Hence calculations will yield an ene
that is substantially too high. To state it more strongly, a
of such functions can never approach completeness for
problem.

The question then is how to modify the standard Gau
ian basis functions of gas phase electronic structure theo
describe confinement. We use a modulating function s
Downloaded 04 Apr 2001 to 128.32.113.135. Redistribution subjec
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that the original Gaussian vanishes identically at the bou
ary:

f 85s• f , ~2!

wheres is the modulating function that satisfies the bounda
condition, and depends only on the atomic radial coordin
r, andf is the original Gaussian function. We have explor
the modulation function

s5F12S r

aD nG , ~3!

where the parametera is the optimizable radius associate
with the atom. A set of modulated basis functions based
Eqs. ~2! and ~3! can approach completeness because t
gradients and higher derivatives at the boundary are non
nishing, as the boundary condition allows. They also ha
the desirable property of reducing to the gas-phase funct
smoothly as the atomic radii approach infinity.

The primary technical difficulty to be overcome with th
use of the modulated basis functions is the fact that they h
nonzero amplitude beyond the cavity boundary, while
quantum mechanical matrix elements must now be defi
only over the cavity volume. The typical Gaussian integ
machinery that makes the unmodulated functions appea
for gas phase calculations is predicated on performing in
grals over all space. We therefore use adaptive numer
integration for evaluating all one- and two-matrix elemen
over the cavity volume, and not over the nonzero tails t
extend beyond. We exploit spherical symmetry so that
angular pieces are determined analytically, and only the o
dimensional radial components are evaluated numericall

The reaction field potential@Eq. ~1!# is then added to the
self-consistent field equations of Hartree–Fock theory. Ite
tion of the equations via standard gas-phase procedures
to an updated solute charge density~trivially a monopole in
the case of atomic ions! that in turn modifies the reaction
field. In this way self-consistency will be obtained betwe
the electronic wave function, and the reaction field due
solvation.

We do not know how standard Gaussian basis sets
perform under wave function confinement. We therefore
the even-tempered basis functions derived in Ref. 28.
even-tempered basis functions are systematic sequenc
Gaussian primitives, which can approach completenes28

The radial functions are

Rkl~r !5Nl~zkl!e
2zklr

2
, ~4!

where the parameters,zkl , for a given value ofl are deter-
mined according to

zkl5a lb l
k , k51,2,...,N1 . ~5!

The parametersa l , andb l were optimally determined for al
atoms through argon.28 Two additional points in regard to
these basis sets should be noted. Since each sequen
primitive Gaussians was optimized for the atom,28 it is not
optimally suitable for the anion. The addition of an electr
should result in greater electron–electron repulsion, a
therefore we expect the wave function of the anion to
more diffuse than that of atom, and the basis sets should
t to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE I. Dependence of optimized radius of F2 as a function of basis set size and Gaussian function modulation.

Radius
~Å!

6s/3p
3 diffuse

linear

8s/4p
3 diffuse

linear

10s/5p
3 diffuse

linear

14s/7p
3 diffuse

linear

6s/3p
3 diffuse
quadratic

8s/4p
3 diffuse
quadratic

10s/5p
3 diffuse
quadratic

14s/7p
3 diffuse
quadratic

2.25 299.316 00 299.478 52 299.276 78 299.450 84 299.513 83
2.35 299.319 48 299.484 41 299.280 62 299.452 36 299.520 16
2.45 299.320 53 299.487 85 299.282 02 299.451 03 299.524 02
2.55 299.489 57 299.528 86 299.540 54 299.281 180 299.526 15 299.529 67
2.65 299.529 71 299.541 00 299.527 04 299.540 90
2.75 299.527 05 299.540 98
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supplemented with additional diffuse functions. These ad
tional Gaussian functions can be determined by extend
the zkl to negativek values. Second, since optimala andb
values were not determined for atoms beyond argon, the
sis set for the potassium cation is not optimal.

RESULTS

Table I shows the convergence of cavity radius for
fluoride anion, as a function of the size of the even-tempe
basis set, and as a function of the modulation exponent in
~3!, i.e., the power dependence onr /a which describes how
rapidly the Gaussian function decays to zero at the bound
The primary conclusion to be drawn from Table I is th
beyond the 8s/4p basis, the optimized radius does seem
converge to a stable value, and that little difference in c
verged radius is found for either linear or quadratic modu
tion. Therefore for all ERF calculations performed for anio
and cations, we used the largest basis for which optimaa
andb parameters were defined in the original paper on ev
tempered basis sets.28 For all ERF calculations on anions
three additional diffuse functions were defined. We used
ear modulation in all subsequent calculations.

Figure 1 shows the total free energy using the E
model for the monovalent and divalent cations Li1, Na1,
K1, and Mg21. Figure 2 shows the total free energy usi
the ERF model for the monovalent and divalent anions F2,
Cl2, and S22. These free energy curves for each ion a
relative energies with respect to the minimum in the co
bined Hartree–Fock energy with wave function totally co
fined plus the Born free energy term@Eq. ~1!#. The minimum
in the total combined energy corresponds to the optimi

FIG. 1. The total ERF1Born energy for monovalent cations as a function
radius: Li1 ~diamonds!, Na1 ~triangles!, and K1 ~circles!. Also plotted is the
free energy work of creating a cavity in water as a function of radius~Ref.
32! ~squares!.
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Born radius for each ion. We also plot the cavitation fr
energy as a function of radius, values that can be determ
from the probability of a given cavity size occurring in th
neat water liquid,29 for which reasonable statistical signifi
cance is found for cavities up to roughly 4.0 Å.30 Note that
the energy scales plotted are different between cations
anions; cations experience a greater repulsion when sque
and we return to this point later.

Tables II and III summarize our results for cations a
anions, respectively, using the ERF model. The entries
each table include the even-tempered basis set size used
absolute minimized value of the sum of the ERF energy,
experimental hydration free energy, enthalpy, and entr
(2TDS),31 and the predicted solvation energy from the ER
model, taken to be the difference in the ERF energy and
energy of the unconfined atom (a→`). Overall the experi-
mentally determined entropic contribution at room tempe
ture is small, and the free energy is dominated by the ent
pic term. However, for quantitative comparisons the roo
temperature entropy is still roughly 5%–10% of the free e
ergy. We will compare our ERF model energy to both t
experimentally reportedDGhyd andDHhyd.

We also list reported optimal ion radii by Rashin an
Honig32 determined from the Born expression using the e
thalpy of solvation taken from experimental measureme
as well as converged radii at the ERF minimum energy, a
ERF model radii corrected for the cavity work to create
spherical cavity of a given size in water. We also note t
the converged radius in our ERF model for the potassium
is ;2.5 Å using the~nonoptimal! 16s/8p even-tempered ba
sis for argon. Using a basis set approaching completenes
found that the optimized cavity radius decreases to 2.3 Å33

FIG. 2. The total ERF1Born energy for anions as a function of radius: F2

~diamonds!, Cl2 ~triangles!, and S22 ~circles!. Also plotted is the free energy
work of creating a cavity in water as a function of radius~Ref. 32! ~squares!.
t to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Downloaded
TABLE II. Comparisons with and summary of the ERF model for cations.

Cation Li1 Mg21 Na1 K1

Basis seta,b 16s/0 diffuse 16s/8p/0 diffuse 16s/8p/0 diffuse 16s/8p/0 diffuse
ERF energy at optimal

radius~hartrees!
27.443 503 6 2199.609 79 2161.813 33 2599.051 84

DGhyd ~kcal/mol!c 2113.5 2437.4 287.2 270.5
DHhyd ~kcal/mol!c 2125.8 2462.4 298.5 278.4
2TDShyd ~kcal/mol!c 11.5 24.9 9.3 6.6
DE5E(solution)

2E~vacuum! ~kcal/mol!
2131.1 2490.0 286.6 253.0

Born radius~Å!d 1.22 1.35 1.56 2.02
ERF radius~Å! 1.1 1.2 1.7 2.5
ERF1cavity work

radius~Å!e
1.1 1.2 1.7 2.4

aBasis is not defined for potassium in Ref.~28!, and results are nonoptimal.
bReference 28.
cReference 31.
dReference 32.
eReference 30.
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It can be seen from Tables II and III that the ERF mod
predicts the ‘‘Born radii’’ for cations with reasonable acc
racy, while the ERF model differs from the Born radii fo
anions by a factor of 2. Of course the Born radius is not
experimental observable. We are merely emphasizing
the radius is an optimizable quantity in our model, who
value for cationspredictedfrom the ERF model is consisten
with a fitting protocol where the radius is treated as an
justable parameter.32 More important, the cation solvatio
energies predicted from the ERF model seem to be in g
agreement with experimental solvation enthalpies, with d
ferences on the order of;5%. This very good qualitative
agreement with our predicted radii and the Born radii arriv
at parametrically, and with energies from experiment, is c
firmation that the fundamental physics of solvation is ca
tured remarkably well by the ERF/Born theory for positive
charged ions. As seen in Fig. 1, the work of cavity formati
(DG2) is relatively flat throughout cavity sizes 0.8–2.5 Å.30

The dominating effect for cations seems to be the mani
tation of the Pauli exclusion principle, i.e., the rapid rise
energy as the confined cavity radius is made smaller than
optimal radius. Since the Born terms do not provide an eq
or more rapid rate of free energy stabilization with decre
ing radius, the optimized radius and dielectric boundary
 04 Apr 2001 to 128.32.113.135. Redistribution subjec
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largely determined by the volume that a cation can occu
We would expect that the free energy due to solvent mole
lar reorganization and non-Born terms (DG4) will also not
effectively compete with this rapid rise in kinetic energy
smaller radii either.

We see that anions occupy larger cavities than cati
for a given isoelectronic pair, and the ERF optimized ene
severely underestimates the experimental free energy or
thalpy of solvation. The likely reason for the mismatch
that the Born theory breaks down for anions. The cavitat
term is now more significant and unfavorable, beginning
rise for cavity sizes of 2.5–4.0 Å that are relevant for anio
and though the corrections in optimized radii due toDG2 are
still small, they are significant enough to decrease the o
mal radius between 0.1 and 0.2 Å. However, we expectDG4

to be more significant, since the solvent structural reorga
zation around a negatively charged sphere will presen
greatly reduced electron density due to unshielded hydrog
pointing toward the anion, providing for significant free e
ergy stabilization at smaller cavities. Furthermore, given
much less steep rise in energy as anions are confine
smaller and smaller cavities suggests that the non-Born te
can provide a competitive free energy to stabilize sma
cavities. In the case of anions, it is the molecular nature
TABLE III. Comparisons with and summary of the ERF model for anions.

Anion F2 Cl2 S22

Basis seta 14s/7p/3 diffuse 16s/8p/3 diffuse 16s/8p/3 diffuse
ERF energy at optimal radius~hartrees! 299.541 003 2459.623 46 2397.551 18
DGhyd ~kcal/mol!b 2111.1 281.3 2314.3
DHhyd ~kcal/mol!b 2121.9 287.2 2321.5
2TDShyd ~kcal/mol!b 11.1 6.7 10.0
DE5E(solution)2E~vacuum! ~kcal/mol! 252.0 243.2 2118.1
Born radius~Å!c 1.32 1.80 1.83
ERF radius~Å! 2.7 3.5 3.7
ERF1cavity work radius~Å!d 2.6 3.3 3.5

aReference 28.
bReference 31.
cReference 32.
dReference 30.
t to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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aqueous solvent that determines the anion radius, phy
that is not captured in the Born model.

CONCLUSIONS

The very literal interpretation of the Born reaction fie
expression for ions in the context of electronic structure c
culations requires zero overlap of the quantum mechan
wave function of the solute and the solvent, which perm
the latter to be treated as a classical dielectric. This allow
to determine a radius for which there is an optimal bala
between the cost of wave function confinement and the B
free energy of solvation. This lifts the empiricism of definin
a Born radius for cations and anions, and allows them to
predicted directly from Born theory in the context of ele
tronic structure calculations. This more rigorous treatmen
the Born theory for ion solvation allows us to determine t
merit of this simplest reaction field approach.

In the case of aqueous solvation of monovalent and
valent cations, the free energy of solvation is dominated
the reaction field electrostatics and steric effects of the
rounding solvent. The approximation of total wave functi
containment perhaps mimics the higher electron density
oxygens oriented toward the cation, thereby not permitt
great penetration of the solute wave function into the solve
Therefore the dielectric boundary is largely defined by
Pauli exclusion principle of the cation itself, i.e., how mu
it can be squeezed and still gain reaction field energy st
lization. Little of the molecular nature of water solvent
energetically competitive at these small radii, i.e.,DG2 is
absolutely small and likelyDG4 is also relatively small, and
therefore the Born expression seems to be largely correc
cations.

By contrast, the physics of anion solvation is not a
equately described by the Born theory since the effects a
ing from the molecular nature of aqueous solvent matte
this case. In particular,DG4 is probably significant at smalle
cavity sizes due to a molecular reorganization of water m
ecules that present their hydrogens toward the anion
equivalently a greatly diminished electron density at the
ion boundary that makes total wave function confinem
less reasonable. In fact anions are larger than cations f
given isoelectronic pair, and it is the molecular nature
solvent or the non-Born terms that provide significant sta
lization at smaller radii. Therefore, the protocols develop
to determine a Born radius for anions are a sensible para
ric means for correcting for solvent molecular effects, a
non-linear terms that are not captured in Born theory.
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